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Introduction
As a result of the aging process, the bone deterio-
rates in composition, structure and function, 
which predisposes to osteoporosis. Osteoporosis 
is defined as deterioration in bone mass and 
micro-architecture, with increasing risk to fragil-
ity fractures [Raisz and Rodan, 2003]. Owing to 
the close relationship between the aging process 
of bone and the pathogenesis of osteoporosis, 
research on the mechanisms of age-related bone 
loss has increased significantly in recent years 
involving a combination of basic, clinical, obser-
vational and translational studies.

Bone is a dynamic organ that serves mechanical 
and homeostatic functions. It undergoes a contin-
ual self-regeneration process called remodeling. 
Remodeling removes old bone and replaces it with 
new bone. This regenerative process occurs in dis-
tinct areas of bone known as bone metabolic units 
(BMUs) [Riggs et al. 2002]. Within each BMU 
bone formation by osteoblasts and bone resorp-
tion by osteoclasts is coupled tightly in a delicate 
balance to maintain bone mass and strength to 
resist deformity. With aging this balance shifts in a 
negative direction, favoring greater bone resorp-
tion and less bone formation. This combination of 
bone mass deficiency and reduction in strength 
ultimately results in osteoporosis and fractures.

Aging in combination with intrinsic and extrinsic 
factors accelerates the decline in bone mass that 
predisposes to fractures. Intrinsic factors include 
genetics, peak bone mass accrual in youth, altera-
tions in cellular components, hormonal, biochemi-
cal and vasculature status. Extrinsic factors include 
nutrition, physical activity, comorbid medical con-
ditions and drugs. In this article we review the 
mechanisms of age-related bone deterioration and 
their impact on the pathogenesis of osteoporosis. In 
addition, current and future therapeutic approaches 
focused on the correction of mechanisms associ-
ated with aging bone will also be outlined.

Bone remodeling in aging bone
Remodeling is continuous and coordinated cycle 
of removal of old bone by osteoclasts followed by 
the deposition of new bone by osteoblasts in 
response to micro damage and variable mechani-
cal loadings. Bone remodeling is a continuous 
process throughout life. In the first three decades 
of life, bone turnover is coupled tightly to main-
tain a steady state between bone resorption and 
bone formation. Although there are variances in 
turnover rates, peak bone mass and size is achieved 
around the age of 15–20 years in women and later 
in men [Raisz and Seeman, 2001]. After this, long 
before sex steroids deficiency occurs, bone loss 
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becomes evident [Slemenda et al. 1996]. After 
reaching the peak of bone mass, bone turnover 
continues at a slower rate as suggested by a  
rapid decline in biochemical measures of bone 
remodeling with the predominance of bone 
resorption over bone formation [Raisz and 
Seeman, 2001]. Later in life, menopause in 
women significantly increases bone resorption 
over formation due to low levels of estrogens thus 
inducing accelerated bone loss. In contrast to the 
mechanisms of bone loss during menopause, 
which have been studied extensively, the triggers 
of an age-related transition from a steady state to 
one of negative net bone loss (both in women and 
men) remain poorly understood.

At the bone surface level, age-related bone loss is 
the consequence of two simultaneous but oppos-
ing processes: subperiosteal apposition, which 
takes place on the outside of the bone, and 
endosteal bone resorption, which takes place on 
the inside of the bone. With increasing age, bone 
remodeling is reduced leading to a negative bone 
balance at individual BMU sites. After the fourth 
decade of life, there is a reduction in the forma-
tion of periosteal bone and at the same time there 
is increasing number of remodeling units within 
endosteal bone resulting in a linear increase in 
endosteal bone resorption in both sexes. The 
overall consequences of these age-related changes 
are cortical thinning, increased cortical porosity, 
thinning of the trabeculae and loss of trabecular 
connectivity, all of which reduce bone quality and 
consequently bone strength [Rosen et al. 1994].

The above opposing processes are consistent with 
longitudinal and cross-sectional studies which 
showed a relatively slow rate of decline in areal 
bone mineral density (aBMD) in both sexes 
beginning at age 40 and continuing throughout 
the adult life [Khosla and Riggs, 2005]. Large 
decreases in lumbar spine volumetric BMD 
(vBMD) secondary to predominant vertebral tra-
becular bone loss beginning in the third decade 
and linear decrease in cortical vBMD in the wrist 
were also demonstrated in both sexes with advanc-
ing age [Riggs et al. 2004]. The changes were 
greater in women than men, owing to accelerated 
bone loss in the menopausal stage.

In terms of the effect of aging on periosteal bone 
formation, the increasing levels of endosteal bone 
loss are concomitant with steady levels of periosteal 
apposition somewhat compensating for the loss of 
bone mass. Therefore, cortical bone loss is less in 

men than in women because periosteal bone for-
mation is greater and is independent of endosteal 
bone resorption. Bone loss reflects the net result of 
all of the periosteal bone formed during aging 
minus all of the bone irreversibly removed from the 
endosteal surface [Seeman, 2002], a process that 
seems to be independent of hormones and closely 
related to potential age-related mechanisms.

In terms of vBMD in the hip, a study by Center 
and colleagues in 852 women and 635 men (60 
years and older) without fractures reported an 
age-related decline in vBMD in the hip [Center 
et al. 2004]. In addition, vBMD was more sensi-
tive than areal BMD in older men and similar to 
that in women, in whom sensitivity was similar for 
both areal (73%) and estimated volumetric (78%) 
BMD cutoffs. The authors conclude that men 
and women have hip fractures at the same esti-
mated femoral neck vBMD suggesting that 
vBMD can provide a useful single measure that 
could be used in both men and women.

Mechanisms of age-related bone loss

Secondary hyperparathyroidism
Both calcium and vitamin D deficiency can con-
tribute to secondary hyperparathyroidism [Lips, 
2001]. Vitamin D deficiency is prevalent in the 
older population irrespective of latitude [Lips, 
2007]. A low serum 25(OH)D concentration 
leads to a small decrease in serum 1,25-(OH)2D 
and calcium absorption which then stimulates an 
increase in parathyroid hormone (PTH) secre-
tion. In addition vitamin D is required for osteo-
blastogenesis and bone formation [Duque and 
Troen, 2008]. The increased serum PTH subse-
quently increase osteoclastic activity and bone 
resorption, resulting in primarily cortical bone 
loss [Lips, 2001]. A chronic negative calcium bal-
ance state can also occur independently of vita-
min D as a result of age-related reduced intestinal 
calcium absorption [Eastell et al. 1991] associated 
with reduced dietary intake. This deficiency, when 
not adequately compensated through dietary 
means or calcium supplements, contributes to 
physiological secondary hyperparathyroidism.

With age, a number of other factors can also cause 
an increasing PTH levels. Common factors include 
impaired renal function, the use of loop diuretics 
such as furosemide and estrogen deficiency. In 
women, there is some suppression of PTH secre-
tion during the rapid phase of bone loss in early 
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postmenopausal period. In the later stage however 
there is gradually increasing PTH secretion which 
increases bone turnover [Ledger et al. 1995].

PTH secretion also increases in aging men, similar 
to what is seen in aging women [Khosla et al. 
2008a; Khosla, 2010]. Normal circulating gonadal 
sex steroid levels in aging men may help to protect 
against bone resorption promoted by increased 
PTH levels. Thus it has been more difficult to 
demonstrate a direct role for PTH in causation of 
age-related bone loss in men [Kennel et al. 2003].

Gonadal sex steroid deficiency
It is well known that sex steroids have significant 
effects on skeletal health. The cessation of ovarian 
function associated with reduced estrogen levels at 
menopause is the start of rapid bone loss in women. 
During the menopause transition, serum 17b- 
estradiol levels decrease by 85–90% and serum 
estrone levels decrease by 65–75% from mean pre-
menopausal levels [Khosla et al. 1997]. In fact, 
there may be a threshold level of serum bioavaila-
ble (non-sex hormone binding globulin [non-
SHBG]-bound) estradiol below 11 pg/ml and 
below 11 pg/ml at which trabecular and cortical 
bone loss occurs, respectively [Khosla et al. 2005]. 
This phase of accelerated bone loss may persist for 
up to 10 years after menopause in most women.

The mechanisms of estrogen deficiency related 
bone loss are multiple and their relative impor-
tance in the pathogenesis of this process remains 
poorly understood [McCauley et al. 2003]. In 
general, effect of estrogen deficiency on bone is 
the result of loss of restraint and control estrogen 
has over mediators of bone resorption. Usually, 
estrogen may inhibit osteoclast formation and 
activity by increasing the production of osteopro-
tegerin (OPG), or transforming growth factor β 
(TGF-β) [Hofbauer et al. 1999; Hughes et al. 
1996]. OPG is a soluble decoy receptor for recep-
tor activator of nuclear factor kappa-B ligand 
(RANKL) and TGF-β induces osteoclast apopto-
sis [Lundberg et al. 2001]. In vitro and in vivo 
studies have also shown that estrogen suppresses 
RANKL production by osteoblastic cells and T 
and B lymphocytes [Eghbali-Fatourechi et al. 
2003; Clowes et al. 2005]. Estrogen also directly 
stimulates apoptosis of osteoclast precursor cells, 
and decreases osteoclast precursor differentiation 
by blocking RANKL/macrophage colony-stimu-
lating factor (M-CSF)-induced activator protein-
1-dependent transcription by reducing c-jun 

activity [Lundberg et al. 1999; Mitnick et al. 
2001]. Indirectly, estrogen may suppress the pro-
duction of bone-resorbing cytokines such as 
interleukin (IL)-1, IL-6, TNF-α, M-CSF and 
prostaglandins [Charatcharoenwitthaya et al. 
2007]. Finally, estrogen is also capable of inhibit-
ing the activity of mature osteoclasts by direct, 
receptor-mediated mechanisms [Oursler et al. 
1994]. In addition to changes to estrogen levels, a 
reduction in ovarian inhibin B across the meno-
pause transition and perimenopausal elevated fol-
licle-stimulating hormone (FSH) also increase 
bone turnover [Perrien et al. 2006].

In men, traditionally it was assumed that decreased 
serum testosterone was responsible for age-related 
bone loss. However estrogen has also been found 
to play a dominant role in age-related bone loss in 
men similar to women. A combination of cross-
sectional and observational studies of aging men 
showed better correlations between serum estra-
diol and BMD than testosterone and BMD at 
various skeletal sites [Slemenda et al. 1997; Khosla 
et al. 2001, 2008b; Mellstrom et al. 2008; Szulc  
et al. 2001]. Further studies looking at differential 
effects between estrogen and testosterone con-
firmed that estrogen deficiency was more impor-
tant than testosterone deficiency in causation of 
bone loss in aging men [Falahati-Nini et al. 2000; 
Leder et al. 2003] and that the effects of estrogen 
on bone were independent of FSH [Sanyal et al. 
2008]. More recently, a large prospective study of 
older men again showed a low bio-available estra-
diol level to be associated with significant increased 
fracture risk and that testosterone in the presence 
of high SHBG is associated with significant 
increased fracture risk when adjusted for estradiol 
levels [LeBlanc et al. 2009]. Nevertheless, testos-
terone contributes to reduced fracture risk in men 
because of its influence on increasing bone size in 
men during growth and development [Clarke and 
Khosla, 2010].

Bone marrow fat
The predominant feature of age-related bone  
loss is the accumulation of bone marrow fat at  
the expense of osteoblastogenesis [Rosen and 
Bouxsein, 2006]. This accumulation of marrow fat 
appears to be an active process independent of 
estrogen since it is evident during the third  
and fourth decade of life [Perrien et al. 2007]. 
Biopsy studies with animal models [Duque et al. 
2009] and humans [Verma et al. 2002; Meunier  
et al. 1971] have consistently demonstrated a 
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significant increase in marrow fat in aging bone. 
More recently MRI studies have also demonstrated 
an age-related increase in marrow fat [Griffith et al. 
2005; Shen et al. 2007]. In addition, there is an 
inverse relationship between marrow fat volume 
and bone volume that was independent of sex and 
correlated with the changes seen in people with 
osteoporosis [Justesen et al. 2001].

Mechanistically, there appears to be a predomi-
nant differentiation of mesenchymal stem cells 
(MSCs) into adipocytes at the expense of osteo-
blasts [Rosen et al. 2009]. The differentiation of 
MSC into osteoblasts involves the recruitment of 
MSCs, release of appropriate amount of growth 
factors and activation of lineage-specific tran-
scription factors [Duque, 2007; Chamberlain et 
al. 2007], recruitment of appropriate numbers of 
MSCs to achieve proper density and confluence 
[Zhou et al. 2008] and adequate oxygen tension 
and blood supply within the bone marrow [Wang 
et al. 2007]. Changes induced by aging can alter 
these conditions thus facilitating MSCs differen-
tiation into adipocytes [Zhou et al. 2008]. 
Furthermore, the main lineage-specific transcrip-
tion factors that direct the differentiation of 
MSCs are the runt-related transcription factor 2 
(Runx2) for osteoblastogenesis and peroxisome 
proliferator-activator gamma 2 (PPARγ2) for adi-
pogenesis [Rosen and Bouxsein, 2006; Gimble 
et al. 2006]. With aging, there is a predominant 
expression of PPARγ2 by MSCs with a concur-
rent decrease in Runx2 expression and therefore 
lower levels of osteoblast differentiation [Lecka-
Czernik, 2006].

Recently, a protein of the nuclear envelope known 
as lamin A/C has been reported as an essential fac-
tor in the osteogenic differentiation of MSCs. 
Lamins are intermediate filament proteins present 
in the nuclear lamina and matrix and are important 
regulators of stem cells differentiation [Hutchinson 
and Worman, 2004; Pajerowski et al. 2007]. Most 
adult mammalian somatic cells contain three major 
lamins grouped into two classes: A type (A, AΔ10 
and C) and B type (B1 and B2) [Li et al. 2011]. 
With aging there is a decrease in lamin A expression 
in normal osteoblasts [Duque and Rivas, 2006]. 
The importance of lamins in bone biology is evi-
dent from changes in bone mass seen in patients 
suffering from Hutchinson Gilford Progeria 
Syndrome (HGPS). Patients suffering from HGPS 
have mutations in the lamin A/C gene [Sandre-
Giovannoli et al. 2003] and show major bone 
changes including severe osteoporosis, osteolysis, 

bone deformities and spontaneous fracture 
[Rodrigues et al. 2002]. A similar syndrome in mice 
caused by defects in type A lamins resulting in low 
levels of lamin A/C was associated with low BMD 
[Mounkes et al. 2003]. Mice lacking the enzyme 
responsible for lamin A/C processing (Zmpste24−/−) 
also show accelerated bone loss and typical features 
of senile osteoporosis [Rivas et al. 2009].

Recently, an in vivo study of knockout lamin A/C 
mice demonstrated that the absence of lamin A/C 
increased the expression of MAN-1 protein which 
co localizes with Runx2 thus affecting its ability as 
an osteogenic transcription factor [Li et al. 2011]. 
This demonstrates that lamin A/C is required in 
osteoblastogenesis and bone formation in vivo.

In fact, aging per se, independently of hormonal 
changes, appears to contribute significantly to 
bone marrow adipogenesis raising the possibility 
that senile osteoporosis is a type of lipotoxic dis-
ease [Duque and Troen, 2008]. Indeed bone mar-
row adipocytes appear to exert a toxic effect on 
osteoblasts [Maurin et al. 2000]. Cocultures of 
adipocytes and osteoblasts reveal that adipocytes 
inhibit osteoblast activity and survival, possibly 
secondary to the release of adipokines and fatty 
acids by the increased number of adipocytes 
within the bone marrow [Musacchio et al. 2007]. 
Further evidence of the lipotoxicity of marrow 
adipocytes on bone comes from the observation 
of PPARγ induction by thiazolidenediones. The 
use of thiazolidenediones in diabetic patients was 
associated with bone loss and higher incidence of 
fractures [Grey, 2008]. The increasing levels of 
PPARγ induced by thiazolidenediones within the 
bone marrow not only affect bone formation, but 
also induce bone resorption [Lazarenko et al. 
2007]. Furthermore, in a mice model, PPARγ was 
proven to functions as a direct regulator of osteo-
clastogenesis [Wan et al. 2007]. Given this obser-
vation, it was considered that blocking PPARγ 
could provide a new therapeutic approach for 
osteoporosis. Although PPARγ knockout mice 
showed high levels of bone formation [Akune et 
al. 2002], pharmacological attempt to increase 
bone mass by blocking PPARγ in diabetic mice 
was unsuccessful despite decreased marrow fat 
[Botolin and McCabe, 2006].

Other factors
A number of clinical studies demonstrated that 
body fat and bone mass were directly related 
[Felson et al. 1993; Lindsay et al. 1992; Glauber  
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et al. 1995; Khosla et al. 1996]. It was further 
observed that serum leptin levels were increased in 
obesity and correlated positively with fat mass 
[Considine et al. 1996]. Subsequently the hormone 
mediating the relationship between fat mass and 
bone mass was demonstrated to be leptin. An 
in vitro study showed that leptin acted on human 
marrow stromal cells to enhance osteoblast differ-
entiation and inhibited adipocyte differentiation 
[Thomas et al. 1999]. Further animal studies also 
reported a central regulatory role of leptin [Ducy 
et al. 2000; Takeda et al. 2002]. More recently, in a 
loss of function of its receptor mice study, leptin 
was shown to regulate bone mass accrual in vivo by 
acting through neuronal means [Shi et al. 2008].

Serotonin was also shown to regulate bone mass 
in rodents [Yadav et al. 2009]. In humans the role 
for circulating serotonin in regulating bone mass 
was recently suggested by the findings from a 
study of premenopausal and postmenopausal 
women [Mödder et al. 2010]. Serotonin levels 
were inversely associated with body and spine 
aBMD, and with femoral neck total and trabecu-
lar vBMD. Serotonin levels remained significant 
negative predictors of femur neck total and tra-
becular vBMD, as well as trabecular thickness at 
the radius, after adjusting for age and BMI.

Attainment of peak bone mass is another factor 
contributing to later age-related bone loss. Those 
persons who achieve a higher peak bone mass are 
less likely to develop osteoporosis later in life as 
age-related bone loss ensues, whereas those with 
low levels are at greater risk [Seeman, 1997]. 
Numerous other factors such as corticosteroids 
usage, diseases such as malabsorption, anorexia 
nervosa and idiopathic hypercalciuria, and behav-
ioral factors such as smoking, alcohol abuse and 
inactivity can also contribute to fracture risk in 
40% of men and 20% of women in the older  
population [Riggs and Melton, 1986]. Finally, 
although controversial still, sarcopenia, probably 
through reduced muscle loading on bone, may 
also contribute to age-related bone loss [Mödder 
et al. 2010; Seeman, 1997].

The role of exercise
Aging is associated with a decline in physical 
activity and mechanical loading. Reduced 
mechanical loading exert diminished effects upon 
osteoblasts resulting in decreased osteoblast 
secretion of OPG and increased expression and 
secretion of RANKL, IL-1, IL-6, IL-11, and 

TNF-α. In turn, these compounds directly stim-
ulate greater osteoclast formation and activity. 
The reduced OPG also permits greater binding  
of RANKL to RANK, which further facilitates 
increased osteoclastogenesis and resorption 
[Duque and Troen, 2008]. Animal studies of 
complete immobilization showed a striking 
remodeling imbalance with a rapid, although 
transient, increase in bone resorption followed by 
a sustained decrease in bone formation [Weinreb 
et al. 1989]. Recently, an anabolic response to 
exercise was shown to be related to the presence 
of lamin A/C [Duque et al. 2011b]. Lamin A/C 
haploinsufficient mice exposed to strenuous exer-
cise demonstrated significant trabecular and cor-
tical thinning and a reduction in osteoblasts and 
osteocyte numbers compared with their seden-
tary counterparts whilst the wild type exposed to 
exercise showed a significant increase in bone vol-
ume and number of bone cells. In humans, func-
tional loading has been shown to improve bone 
mass [Leichter et al. 1989] and exercise training 
programs can prevent or reverse almost 1% of 
bone loss per year in both lumbar spine (LS) and 
femoral neck (FN) for both premenopausal and 
postmenopausal women [Wolff et al. 1999].

Bone loss due to decreased bone formation
Although sex steroids deficiency may contribute 
to age-related impairment of bone formation, 
reductions in key growth factors important for 
osteoblast differentiation/function may also con-
tribute. Aging is associated with decreases in the 
amplitude and frequency of growth hormone 
secretion from the anterior pituitary [Marie et al. 
1993] with growth hormone levels declining by 
up to 14% per decade in both elderly men and 
women [Rosen et al. 1994] leading to a decrease 
in hepatic production of insulin-like growth factor 
(IGF)-1 [Boonen et al. 1999; Pfeilschifter et al. 
2000] and smaller decreases in IGF-2 [Boonen 
et al. 1999]. In addition to decreased systemic and 
local skeletal production of IGF-1 and IGF-2, 
growth factor binding proteins may also contrib-
ute to age-related bone loss. Higher serum IGF 
binding protein (IGFBP)-2 predicted lower 
BMD, and was associated with increased markers 
of bone resorption independent of age, body 
mass, and sex hormones [Amin et al. 2007].

Changes in key proteins such as sclerostin have 
also been implicated in bone formation reduc-
tion. Sclerostin (SOST), a glycoprotein primar-
ily secreted by osteocytes is a potent inhibitor of 
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osteoblastogenesis. SOST binds to coreceptors 
LRP5 and LRP6 and prevents colocalization 
with frizzled protein and Wnt signaling, thereby 
reducing osteoblastogenesis and bone formation 
[Kneissel, 2009]. Loss-of-function mutations  
of the SOST gene are associated with an auto
somal-recessive disorder, sclerosteosis, which 
causes progressive bone overgrowth [Balemans 
et al. 2001], a deletion downstream of this gene, 
which causes reduced SOST expression, is asso-
ciated with a milder form of the disorder called 
van Buchem disease [Balemans et al. 2002] and  
finally SOST-null mice have a high bone mass 
phenotype [Li et al. 2008]. Consistent with  
these observations, pharmacologic inhibition of 
SOST has shown significant anabolic effects. In 
aged ovariectomized rat model of postmenopau-
sal osteoporosis, treatment with SOST neutral-
izing monoclonal antibody resulted in marked 
increases in bone formation on trabecular, peri-
osteal, endocortical, and intracortical surfaces 
[Li et al. 2009]. In addition, the increases in 
bone formation induced by antisclerostin anti-
body are not associated with increases in bone 
resorption [Lane and Silverman, 2010]. SOST 
also appears to have a role in mediating bone 
responses to mechanical unloading. SOST 
knockout mice were resistant to bone loss 
induced by mechanical unloading [Lin et al. 
2009]. In humans, a recent phase I study of a 
single dose of a SOST monoclonal antibody 
(AMG 785) administered to healthy men and 
postmenopausal women was associated with dose-
related increases in the bone-formation markers 
procollagen type 1 N-propeptide (P1NP), bone-
specific alkaline phosphatase (BAP) and osteocal-
cin, and with a dose-related decrease in the 
bone-resorption marker serum C-telopeptide 
(sCTx) [Padhi et al. 2011].

Cathepsin K
Normal bone resorption and remodeling criti-
cally depend upon the synthesis and secretion of 
cathepsin K (CTSK) by osteoclasts [Troen, 
2004; Yasuda et al. 2005; Motycykova and Fisher, 
2002]. Bone resorption begins when osteoclasts 
bind firmly to bone surfaces forming resorption 
pits. An acid medium is produced within these 
pits resulting in the dissolution of the osseous 
mineral component exposing the organic matrix. 
The matrix is then degraded by the enzymes 
metalloproteinases and CTSK. In fact, RANKL, 
which plays a critical role in osteoclast differ-
entiation and activation, has been shown to 

stimulate CTSK mRNA and protein expression 
in human osteoclasts [Shalhoub et al. 1999]. 
Indeed many of the agents that have been  
shown to induce osteoclast formation and acti-
vation or to inhibit osteoclast activity enhance 
and suppress, respectively, CTSK gene expres-
sion [Troen, 2006].

Agents that stimulate the osteoclast to produce 
increased amounts of CTSK include NFAT, 
TNF, IL-1, PPARΔ/β, stretching, and extracellu-
lar matrix proteins (ECM). Inhibitors of CTSK 
expression include estrogen, interferon-γ (IFN-
γ), and OPG [Troen, 2004]. A phase I study of a 
CTSK inhibitor, odanacatib (ODN), showed 
that it was well tolerated, had a long half life, and 
exhibited significant and sustained suppression 
of bone resorption markers with weekly and daily 
regimen with no effects on markers of bone for-
mation [Stoch et al. 2009]. A subsequent phase II 
study of postmenopausal women [Bone et al. 
2010] demonstrated dose-dependent increases  
in BMD in all sites. The greatest increase was 
seen with the highest dose. Resorption markers 
fell in a dose-dependent manner for the first  
6 months after which they increased and the  
difference with placebo disappeared. Bone for-
mation markers increased with significant dif-
ferences compared with placebo observed at 12 
and 24 months. Recently, results of an extension 
of the phase II study for another year was reported 
[Eisman et al. 2011]. Continued treatment with 
50 mg of ODN for 3 years produced significant 
increases from baseline and from year 2 in BMD 
at the spine (7.9% and 2.3%) and total hip (5.8% 
and 2.4%). Urine cross-linked N-telopeptide of 
type I collagen (NTx) remained suppressed at 
year 3 (−50.5%), but bone-specific alkaline phos-
phatase (BSAP) was relatively unchanged from 
baseline. Treatment discontinuation resulted in 
bone loss at all sites, but BMD remained at or 
above baseline. After ODN discontinuation at 
month 24, bone turnover markers increased tran-
siently above baseline and resolved by month 36. 
There were similar overall adverse event rates in 
both treatment groups.

Finally, an important extrinsic factor causing 
reduced bone formation is glucocorticoids.

Glucocorticoids suppress bone formation by 
inhibiting Wnt/β-catenin signaling thereby 
impairing osteoblastogenesis, inhibit osteoblastic 
function directly and by inhibiting IGF-I synthe-
sis [Canalis et al. 2007].
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Osteoporosis therapy: present and future
Based on the mechanisms underlying age-
related bone loss, the main goals of therapy 
should include the inhibition/restriction of 
osteoclastic activity, the enhancement of osteo-
blastic activity, and the regulation of bone  
marrow adipogenesis. In addition, contributing 
factors should be corrected or minimized. 
Currently the main classes of agents are antire-
sorptives, which suppress osteoclastic activity, 
and anabolic agents, which target osteoblasts 
(Table 1).

Antiresorptives
This class comprises bisphosphonates, hormone 
replacement therapy (HRT), selective estrogen- 
receptor modulators (SERMs), strontium rane-
late, and RANKL antibody.

The nitrogen-containing bisphosphonates, such 
as alendronate, risedronate, ibadronate, and more 
recently zoledronate are first-line agents for the 
treatment and prevention of osteoporosis. These 
agents inhibit bone resorption by inducing osteo-
clasts apoptosis, thus reducing the number of 
osteoclasts in the BMU [Riggs and Melton, 
1986], suppressing the capacity of osteoclasts to 
resorb bone by modifying their shape and nullify-
ing their enzymatic capacity and also enhances 

secondary mineralization of preformed osteons 
[Russell, 2006]. There is also evidence suggesting 
that bisphosphonates (specifically alendronate) 
may promote osteoblast proliferation and matura-
tion [Boonen et al. 1999], while inhibiting bone 
marrow adipogenesis [Duque and Rivas, 2007; 
Duque et al. 2009].

Most of the bisphosphonates have well-established 
antifracture efficacy. Alendronate has vertebral 
fracture reduction efficacy in postmenopausal 
women [Black et al. 1996], in men [Orwoll et al. 
2000], in glucocorticoid-induced osteoporosis 
[Adachi et al. 2001] and nonvertebral fracture 
reduction including hip fractures [Wells et al. 
2008a]. Similarly risedronate reduce vertebral 
fractures [Harris et al. 1999; Reginster et al. 2000], 
nonvertebral fractures [Wells et al. 2008b], hip 
fractures in osteoporotic older women [McClung 
et al. 2001], and glucocorticoid-induced osteopo-
rosis [Reid et al. 2000].

Ibandronate has demonstrated efficacy against 
vertebral fractures in postmenopausal women 
and non vertebral fractures in higher-risk sub-
group (femoral neck BMD T score < −3.0) 
[Chesnut et al. 2004]. The intravenous bisphos-
phonate zoledronate also has fracture reduction 
efficacy for vertebral, hip, and nonvertebral frac-
tures, in both men and women [Black et al. 2007; 

Table 1.  Pharmacological effect of osteoporosis treatments on the typical features of age-related bone loss 
(adapted from Duque and Troen, 2008).

Compound Osteoblast Adipocyte Osteoclast

Bisphosphonates  differentiation
 activity
 apoptosis

 differentiation  differentiation
 activity
 apoptosis

Calcitonin  activity
 apoptosis

PTH  activity
 survival
 differentiation

 differentiation  activity

SERMs  differentiation
 activity

Strontium ranelate  activity
 differentiation

 activity
 survival

Vitamin D  activity
 differentiation
 apoptosis

 differentiation
 �trans-differentiation 

to osteoblasts

 activity

Denosumab  differentiation
 activity
 apoptosis

PTH, parathyroid hormone; SERM, selective estrogen-receptor modulator
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Lyles et al. 2007] and glucocorticoid-induced 
osteoporosis [Reid et al. 2009].

Among these bisphosphonates, there are dif
ferences in side-effect profile, tolerability, and 
compliance rate. A review of these clinical con-
siderations including treatment duration is dis-
cussed in an earlier issue [Langdahl and Harsløf, 
2011] in this journal.

Denosumab
Since identified as a key molecule in mediating 
osteoclast development, activity, and survival 
[Lacey et al. 1998], the inhibition of RANKL 
activity has been tested as a therapeutic target  
for osteoporosis. Recently, a fully human mono-
clonal antibody to RANKL called denosumab 
was developed and tested. Denosumab blocks 
RANKL binding to RANK thus inhibiting  
the development and activity of osteoclasts. 
Denosumab administered every 3 or 6 months to 
postmenopausal women with low BMD over 12 
months resulted in an increase in bone mineral 
density at the lumbar spine of 3.0–6.7%, at the 
total hip of 1.9–3.6%, and at the distal third of the 
radius of 0.4–1.3% [McClung et al. 2006]. Near-
maximal reductions in mean levels of serum 
C-telopeptide from baseline were evident 3 days 
after the administration of denosumab.

Six-monthly subcutaneous injections of deno-
sumab for 36 months was shown to reduce the 
risk of new radiographic vertebral fractures by 
68%, reduce hip fractures by 40% and reduced 
the risk of nonvertebral fractures by 20% 
[Cummings et al. 2009]. There was no increase  
in the risk of cancer and infection compared  
with placebo; however, the major concern about 
the long-term use of denosumab relates to its 

possible effects on the immune system, since 
RANKL is expressed not just on bone cells but 
also on immune cells. Although not statistically 
significant there was a significant increase in rates 
of eczema and hospitalizations for cellulitis 
[Cummings et al. 2009] and more neoplasms and 
serious infections in the denosumab group com-
pared with placebo [McClung et al. 2006]. These 
results suggest ongoing surveillance of patients 
receiving denosumab is prudent, particularly 
when the drug is used in the wider community in 
patients with comorbidities that might not have 
been included in clinical trials. Nevertheless it 
has several advantages over the bisphosphonates: 
(1) convenient biannual subcutaneous adminis-
tration that could improve adherence; (2) lack of 
gastrointestinal side effects; (3) reversibility, 
because it targets RANKL and is not incorpo-
rated into the bone mineral; and (4) useful for 
impaired renal function because of nonelimina-
tion by the kidneys.

Other antiresorptives
The other antiresorptives such as HRT and 
SERMs have largely fallen out of recommenda-
tion in recent years. Although hormone therapy 
reduces vertebral, nonvertebral, and hip fractures, 
this is offset by increased risk of breast cancer and 
cardiovascular diseases [Mödder et al. 2010; 
Seeman, 1997]. Whilst raloxifene, the only SERM 
approved for the prevention and treatment of 
postmenopausal osteoporosis, only has vertebral 
fracture efficacy [Riggs and Melton, 1986] and is 
associated with increased risks of venous throm-
boembolic events and hot flushes. A newer SERM, 
lasofoxifene, showed a small advantage over ralox-
ifene with a 24% reduction in nonvertebral frac-
ture at 5 years (primarily peripheral fractures, 
however) [Becker, 2010].

Table 2.  Novel approaches to osteoporosis treatment.

Compound Osteoblast Adipocyte Osteoclast

Cathepsin  
K inhibitor

 differentiation
 activity
 apoptosis

SOST antibody  activity  
Interferon γ  activity

 differentiation
 differentiation  �activity (uncoupling 

favoring formation)
BMP agonists  activity

 differentiation
 

BMP, bone morphogenetic protein; SOST, sclerostin.
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Anabolics
PTH increases bone formation through several 
actions, including increasing commitment of 
MSCs to the osteoblast lineage, increasing osteo-
blast maturation and possibly life span, and 
reducing the osteocyte production of sclerostin to 
further stimulate bone formation. PTH stimula-
tion of osteoblastogenesis also increases RANKL 
production, which then stimulates osteoclast mat-
uration and activity, increasing bone remodeling 
overall; however, the overall effect is a positive for-
mation balance [Lane and Silverman, 2010].

The anabolic effect of exogenous PTH was first 
reported in humans 20 years ago. Paired bone 
biopsies from a small group of patients receiving 
teriparatide by daily sc injections for 6–24 months 
demonstrated substantial increases in iliac trabec-
ular bone volume, with evidence of new bone  
formation [Reeve et al. 1980]. Since then two ana-
bolic agents have been approved for the treatment 
of osteoporosis, teriparatide, a 1–34 amino acid 
fragment of human recombinant PTH [PTH (1–
34)] and in Europe, the full-length PTH (1–84) 
molecule.

Teriparatide has shown vertebral and nonvertebral 
fracture reduction in postmenopausal women with 
osteoporosis [Neer et al. 2001]. In men with osteo-
porosis, those who received teriparatide and who 
may have received follow-up antiresorptive therapy 
had a decreased risk of moderate and severe verte-
bral fractures [Kaufman et al. 2005]. Teriparatide 
also has efficacy in glucocorticoid-induced osteo-
porosis. Compared with alendronate, teriparatide 
induced earlier and greater gains in BMD at the 
lumbar spine and total hip and was more effective 
in preventing new vertebral fractures [Saag et al. 
2007]. As for PTH(1–84) efficacy against vertebral 
fractures in postmenopausal women has been 
demonstrated [Greenspan et al. 2007].

Dual mode of action
Strontium ranelate appears to have a mixed mode 
of action by increasing bone formation and reduc-
ing bone resorption leading to rebalancing of bone 
remodeling in favor of bone formation. Mechanisms 
by which strontium acts include: increases osteo-
blast replication, differentiation, and activity 
[Canalis et al. 1996; Caverzasio, 2008], downregu-
lates osteoclast differentiation and activity [Baron 
and Tsouderos, 2002; Takahashi et al. 2003], 
increases the OPG/RANKL ratio directly [Atkins 
et al. 2009] or via a calcium-sensing receptor 

[Brennan et al. 2009] and increases apoptosis of 
osteoclasts [Mentaverri et al. 2003].

Strontium ranelate reduced vertebral fractures 
[Meunier et al. 2004] and nonvertebral fractures 
including hip [Reginster et al. 2005] in postmeno-
pausal osteoporosis. Trial evidence suggests that  
it is effective in a wide range of patient profiles, 
from early postmenopausal women with osteope-
nia to elderly women over the age of 80 years, and 
its antifracture efficacy is independent of baseline 
severity of osteoporosis, bone turnover level or 
the presence of clinical risk factors [Reginster  
et al. 2010]. Furthermore, the antifracture effi-
cacy of strontium ranelate is sustained over 8 
years [Reginster et al. 2009].

Novel approaches to osteoporosis treatment
Newer agents with novel modes of actions are 
under investigation in clinical trials or have shown 
promissory results in animal studies (Table 2).

SOST antibody
Positive bone formation results from a recent 
phase I study [Padhi et al. 2011] make the SOST 
antibody a promising therapeutic drug. At  
this time, however, the monoclonal antibody to 
SOST is in early phase II clinical trials in men 
and postmenopausal women with osteoporosis 
[ClinicalTrials.gov: NCT01101048]. The long-
term safety of SOST is yet to be addressed.

Cathepsin K inhibitor (odanacatib)
At 36 months, ODN achieves increases in BMD 
similar to zoledronate and denosumab. However, 
compared with these agents, the reduction in 
resorption markers is less but there is also a smaller 
reduction in bone formation markers. What is not 
available yet is fracture data. The results of an ongo-
ing randomized double-blind placebo-controlled 
clinical trial of 16,000 treatment-naïve postmeno-
pausal women age 65 and above [ClinicalTrials.
gov: NCT00529373] is eagerly anticipated.

New anabolic targets
Three regulatory proteins, which have also been 
intensely investigated as potential therapeutic tar-
gets, are bone morphogenetic proteins (BMPs), 
elements of the Wnt signaling pathways and IFNγ. 
BMPs [Canalis et al. 2003] and Wnt [Krishnan  
et al. 2006] induce the differentiation of mesen-
chymal cells toward mature osteoblasts. BMPs 
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may also induce osteoclastogenesis by enhancing 
the expression of RANKL [Kaneko et al. 2000]. 
Despite the use of locally administered BMPs for 
the treatment of nonunion fractures and to 
enhance the formation of spinal fusions, the sys-
temic administration of BMPs would be limited 
by their nonskeletal effects, mitogenicity, and 
short half life. In terms of neutralizing Wnt antag-
onist such as with Dkk-1 antibodies, preclinical 
models have shown an increase in BMD, trabecu-
lar bone volume, osteoblast surface, and bone for-
mation in rodents [Grisanti et al. 2006]. Currently, 
there is no information on their value for the 
treatment of osteoporosis.

Finally, recent evidence [Duque et al. 2011a] sug-
gests that IFNγ, a protein that is produced by 
MSCs in the bone microenvironment, could be 
used as an anabolic treatment for osteoporosis at 
low doses. Oophorectomized and aged mice 
treated with IFNγ showed a significant gain in 
bone mass, which was mostly dependent on bone 
formation. Considering that IFNγ is currently 
used as a treatment for other diseases such as 
hepatitis C and osteopetrosis, this compound 
could become a promissory alternative as a bone 
anabolic in the near future.

Conclusion
Age-related bone loss is a complex and heterogene-
ous disease. A combination of genetic, hormonal, 
biochemical, and environmental factors underlie its 
pathophysiology. The result is a decline in bone 
quantity and quality that increases fracture risk in a 
progressive manner. Despite greater understanding 
of the mechanisms of these contributing factors 
through clinical and animal studies, more research 
is needed to determine the relative contributions of 
each of these factors in order to improve preventa-
tive and therapeutic options. In addition, despite 
the availability of an armamentarium of agents, the 
optimal agent remains a challenge.
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