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Abstract

Background: Falls are common in older adults and can devastate personal independence through injury such as fracture
and fear of future falls. Methods to identify people for falls prevention interventions are currently limited, with high risks of
bias in published prediction models. We have developed and externally validated the eFalls prediction model using routinely
collected primary care electronic health records (EHR) to predict risk of emergency department attendance/hospitalisation
with fall or fracture within 1 year.
Methods: Data comprised two independent, retrospective cohorts of adults aged ≥65 years: the population of Wales, from the
Secure Anonymised Information Linkage Databank (model development); the population of Bradford and Airedale, England,
from Connected Bradford (external validation). Predictors included electronic frailty index components, supplemented
with variables informed by literature reviews and clinical expertise. Fall/fracture risk was modelled using multivariable
logistic regression with a Least Absolute Shrinkage and Selection Operator penalty. Predictive performance was assessed
through calibration, discrimination and clinical utility. Apparent, internal–external cross-validation and external validation
performance were assessed across general practices and in clinically relevant subgroups.
Results: The model’s discrimination performance (c-statistic) was 0.72 (95% confidence interval, CI: 0.68 to 0.76) on
internal–external cross-validation and 0.82 (95% CI: 0.80 to 0.83) on external validation. Calibration was variable across
practices, with some over-prediction in the validation population (calibration-in-the-large, −0.87; 95% CI: −0.96 to −0.78).
Clinical utility on external validation was improved after recalibration.
Conclusion: The eFalls prediction model shows good performance and could support proactive stratification for falls
prevention services if appropriately embedded into primary care EHR systems.
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Key Points

• Falls can devastate personal independence through injury such as fracture, and fear of future falls.
• Proactive falls prevention could help prevent both future injury and falls, but existing prediction models have limitations.
• We have developed and externally validated the eFalls prediction model to support proactive falls prevention services.
• eFalls has good predictive performance and is suitable for integrating into primary care electronic health record systems.
• eFalls could help transform how falls prevention services are delivered in the UK and, in the future, internationally.

Introduction

Falls are common in older age, with around one-third of
people aged >65 experiencing at least one fall each year [1].
Falls have a potentially devastating impact on independence
through associated injuries such as fractures, and decreased
ability to carry out activities of daily living [2, 3]. The
fear of experiencing future falls can be hugely constraining,
affecting around half of those who have fallen previously,
with resulting activity avoidance and social isolation [4–6].
Falls also have a major impact on health and care systems
globally [4], as a leading cause of hospitalisation in older
people [7]. The incidence of falls is also projected to rise in
line with the global ageing demographic [8].

Falls typically result from interaction between a range
of factors, for example, gait and balance impairment, sen-
sory impairment, medications and environmental factors
[2]. Evidence indicates that major reductions in falls risk
can be achieved through interventions targeting these risk
factors, including resistance exercise training, or through
multifactorial assessment and treatment [9].

Multicomponent falls prevention interventions are
supported as clinically and cost-effective interventions in
UK and international guidelines [10, 11]. The 2022 World
Falls Prevention Guidelines recommend stratifying older
people into levels of risk based on having fallen in the past
12 months, and, for those who have fallen, providing tailored
interventions based on severity of the fall and whether
gait and balance are impaired. This approach is largely
reactive, whereby a history of falling is a pathway entry
criterion, and could be considered a limitation. Proactive falls
prevention for people who have not yet fallen but are at high
risk could help prevent both future injury and fall-related
fear. However, using performance-based tests to support
patient stratification requires additional clinical resources,
which is challenging in time-pressured environments and
is a barrier to implementation [12]. The use of routinely
collected electronic health records (EHR) to automate
identification of falls risk has considerable potential to
support more efficient implementation of falls prevention
interventions.

A 2021 systematic review of prognostic models for falls
in community-dwelling older adults identified 72 falls
prediction models, only three of which were externally
validated [13]. Discrimination (reported in only 40 cases)
was wide ranging and at best moderate on external

validation (where conducted). Only seven models reported
calibration, which was moderate to poor. Many potentially
important predictors were rarely considered in these existing
models, such as visual impairment (7 models, 9.7% of
those considered); dizziness, polypharmacy and body mass
index (4 models each, 5.6%); or dementia diagnosis (2,
2.8%). Models were largely based on prospective cohort
or survey data, did not adequately report their outcome
definition and required additional clinical information to
be gathered. All of these models were found to be at a
high risk of bias, with concerns in the analysis domain for
all studies, making them unsuitable for implementation in
practice.

A 2022 EHR-based prediction model for 10-year falls risk
was promising but was limited to patients with an indication
for antihypertensive treatment [14], thus does not necessarily
apply to the wider population at risk of falls. It had good
discrimination on external validation, but over-predicted
falls risk at 1 year (the usual time horizon for stratifying
patients for falls prevention interventions). Furthermore,
frailty was only considered only as a composite score, rather
than as individual frailty components (for example, those
from the electronic Frailty Index [eFI] [15]).

Thus, in this study we aimed to develop and externally
validate a prediction model using routinely collected primary
care data, to accurately predict the risk of emergency depart-
ment (ED) attendance/hospitalisation with fall or fracture
(as an indicator of a fall injury) within 1 year of assessment
in general practice, for all individuals aged ≥65 years.

Methods

Two retrospective cohorts were used in the development and
external validation of the eFalls prediction model. Model
development was conducted in the Secure Anonymised
Information Linkage (SAIL) Databank, which contains
longitudinal, routinely collected, anonymised EHR data
sources from around 5 million people across Wales, with
linked primary care, ED attendance, hospital admissions
and Office for National Statistics mortality data [16]. SAIL
uses Read version 2 clinical coding ontology in primary care
data.

External validation was performed in Connected Brad-
ford, which includes linked health and social care data from
around 800,000 residents of Bradford and Airedale, located
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in the north of England [17]. The included data span five
NHS Trusts, 86 general practices and linked health, educa-
tion, social care, environmental and local government data.
Connected Bradford uses Systematised Nomenclature of
Medicine—Clinical Terms (SNOMED-CT) as the clinical
coding ontology in primary care.

Both included data sources have been described in detail
elsewhere [16, 17].

Population

Model development was conducted in patients registered
with a SAIL-providing general practice on 1 April 2018.
External validation took place in those registered with a Con-
nected Bradford general practice on 1 January 2019. Eligible
patients were defined the same way in both populations as
those with linked data, aged ≥65 years.

Outcomes

The outcome was any (one or more) ED attendance or
hospital admission for a fall or fracture (as an indicator
of an injurious fall) within 12 months of their baseline
predictor assessment. Outcomes were identified in SAIL
through linkage with the Emergency Department Dataset
and Patient Episode Database for Wales and in Connected
Bradford through linked secondary care data.

A list of ICD-10 codes used to define fall/fractures is
included in Supplementary Table S2.3.

Candidate predictors

Frailty is a recognised predictor of falls, regardless of which
frailty model is used, but there is currently uncertainty
regarding which individual frailty components contribute to
falls risk [18]. The electronic Frailty Index (eFI), which has
been externally validated for a range of outcomes and has
good convergent validity [15, 19], has been shown to identify
older people at increasing risk of falling [20].

The eFI includes components only infrequently con-
sidered in other frailty measures (e.g. dementia, activities
of daily living (ADL) impairment, visual impairment,
polypharmacy), though it is uncertain which (if any) of
the eFI components are themselves associated with falls risk,
nor how strong individual associations are. Thus, candidate
predictors in the eFalls model included the 36 components of
the eFI [15], supplemented with variables available within
routinely collected primary care data. These 44 additional
variables were informed by a systematic review, funded by the
National Institute for Health Research School for Primary
Care Research (NIHR-SPCR) Evidence Synthesis Working
Group [21], and targeted scoping reviews.

Candidate predictor variables were constructed by organ-
ising individual EHR SNOMED-CT codes into groups,
with back transformation to Read version 2 using NHS
England Technology Reference Update Distribution lists,
with clinical validation of all new predictor variables in both
SNOMED-CT and Read version 2.

Sample size

Using recommendations to minimise overfitting and esti-
mate risks precisely [22], the minimal sample size required
for model development was 50,927 with 2,445 events, based
on an anticipated 90 predictor parameters. The number of
fall/fractures in SAIL far exceeded this at 32,097.

Assuming performance similar to that of internal val-
idation, a minimum of 10,882 people (523 events) were
required for external validation to achieve precise estimates of
predictive performance [23]. Connected Bradford contained
81,685 participants with 2,389 events.

Further calculation details are given in Appendix S2.

Statistical analysis

Model development and internal validation analyses were
conducted in Stata version 17 (StataCorp). External valida-
tion analyses were conducted in R version 4.2.3. This report
adheres to the TRIPOD-Cluster checklist for transparent
reporting of multivariable prediction models developed or
validated using clustered data [24].

Missing data

Missing data were treated the same way in both model devel-
opment and validation data. Where individual diagnoses
or prescriptions were not recorded for a patient, they were
assumed not to be present. Similarly, where a fall/fracture
was not coded within 12 months, it was assumed that no fal-
l/fracture occurred. For other predictors, this study employs
missing indicators, with missing observations allocated to
‘missing’ groups for categorical variables [25], to be aligned
with the approach intended at model implementation [26].

Model development

Researchers at the University of Birmingham conducted
the model development and internal validation. The pre-
dicted risk of a fall/fracture was modelled using multivari-
able logistic regression with a Least Absolute Shrinkage and
Selection Operator (LASSO) penalty. Clustering of partic-
ipants by general practice was not accounted for at model
development, but predictive performance was assessed by
practice. The LASSO tuning parameter, lambda, was chosen
to minimise the cross-validation function on 10-fold cross-
validation. Continuous predictors (age and polypharmacy)
were modelled using second-order fractional polynomials,
with functional forms chosen in the presence of all predic-
tors. Transformed age and polypharmacy terms were then
used as candidate predictors in the LASSO regression.

Internal validation

Internal validation was conducted using bootstrapping with
25 samples (chosen for computational efficiency due to the
use of big data), sampling with replacement from the model
development population. The predictive performance of the
model developed in each bootstrap was assessed in both that
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sample and the original data, to gain estimates of optimism,
and model performance estimates were adjusted accordingly.
Model stability was assessed through probability distribution
and calibration instability plots [27].

Performance was assessed through calibration, discrim-
ination and clinical utility. Calibration was quantified
using the calibration slope, calibration-in-the-large (CITL),
and the ratio of Observed to Expected outcomes (O/E).
Calibration plots show the agreement between predicted
and observed outcome probabilities within groups (defined
by 20ths of outcome risk), and across all individuals
using smooth (loess) calibration curves. Discrimination was
assessed using the c-statistic. Clinical utility was quantified
using net benefit and decision curve analysis [28, 29]. Risk
thresholds of clinical interest for guiding decision making
were specified a priori by a clinical user group. Thresholds
between 10% and 25% were chosen, thus net benefit in this
range was of most interest.

Variability in model performance was assessed across indi-
vidual general practices [30], plotting performance estimates
against their standard errors (practices with <10 events
omitted from visualisations to preserve anonymity). Predic-
tive performance was summarised across all practices, on
appropriate scales [31], with random-effects meta-analysis
estimated using restricted maximum likelihood. Confidence
intervals for pooled estimates were derived using the Har-
tung–Knapp–Sidik–Jonkman variance correction [32].

Internal–external cross-validation

An internal–external cross-validation approach was used for
further validation in the model development dataset [33,
34], across subgroups by ranked Welsh Index of Multi-
ple Deprivation (WIMD, 2019 version). In each cycle,
the model development process (as described above) was
repeated using all-but-one of the groups. This model was
then applied to the omitted data, and its predictive per-
formance was assessed. Following all cycles, performance
estimates were summarised using a random-effects meta-
analysis, as specified above.

External validation

External validation was conducted by researchers at Univer-
sity of Leeds, independent to the model development team.
The prediction model equation was applied to the external
data to predict outcome risks for each participant in the
dataset. Predictive performance was evaluated as described
above.

Performance was also assessed in clinically relevant sub-
groups, with the above assessment repeated by sex, body
mass index (BMI) category, Indices of Multiple Deprivation
(IMD) subgroups (grouped at quintile values) and frailty
group (fit, mild, moderate or severe [15]).

Given the importance of model calibration for the clinical
application of clinical prediction models, where calibration
was suboptimal in the new population, recalibration to the
external data was considered [35]. Updating the intercept

was used to account for differences in outcome frequency,
while adjustment of all regression coefficients by the same
adjustment factor accounted for any under- or overfitting at
model development [36]. This was implemented by fitting
a new logistic regression model in the external validation
data, with the linear predictor value from the eFalls model as
the only variable. Apparent performance of this recalibrated
model was assessed in the Connected Bradford data, as
described above.

Patient and public involvement

Patient and public representatives were involved in the devel-
opment of the research question, project implementation,
setting risk thresholds for examination of net benefit and
interpretation of findings. Use of the SAIL Databank was
approved by an independent Information Review Gover-
nance Panel that contained members of the public.

Results

Summary of development and validation datasets

The model development data constituted a combination of
eligible patients from 455 general practices across Wales. Of
the 660,417 participants available for model development,
32,097 (4.9%) experienced a fall/fracture resulting in ED
attendance or hospitalisation within 12 months. The exter-
nal validation data, from Connected Bradford, contained
81,685 eligible participants, across 76 practices, with 2,389
(2.9%) fall/fracture events.

A comparison of population characteristics for model
development and external validation cohorts is given in
Table 1 and Supplementary Table S3.1.

Model development and internal validation

The eFalls prediction model is given in full in Supplemen-
tary Table S3.2. LASSO regression retained 75 predictors
in the final model. Instability plots (Supplementary Figures
S3.3/4) showed low variability in individual-level predic-
tions and calibration curves, implying a stable model in the
development population. Apparent performance, average
optimism and optimism-adjusted estimates in the develop-
ment dataset (not accounting for clustering by practice) are
reported in Supplementary Table S3.3.

Apparent calibration in the model development data was
excellent in the range of predicted risks up to 20%, with the
calibration curve laying close to the diagonal line of ideal cal-
ibration (where predicted risks exactly match observed out-
comes, see Figure 1). The calibration slope of 0.99 (95% con-
fidence interval, CI: 0.75 to 1.22) and CITL of −0.13 (95%
CI: −0.66 to 0.40) on internal–external cross-validation
suggest good calibration, with some over-prediction of risks
on average (see Table 2). Over-prediction was evident in the
calibration plot for the 5% of the population with the highest
predicted fall/fracture risk, with the summary point for this
group lying below the diagonal on the calibration plot (in
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Table 1. Descriptive statistics for model development and external validation cohorts, stratified by outcome status at
12 months

Model development data External validation data

Total Fall/fracture No fall/fracture Total Fall/fracture No fall/fracture
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n 660,417 32,097 (4.9) 628,320 (95.1) 81,685 2,389 (2.9) 79,296 (97.1)
Male, n (%) 311,742 (47.2) 11,423 (35.6) 300,319 (47.8) 37,319 (45.7) 872 (36.5) 36,447 (46.0)
Age (years), median [LQ to UQ] 73 [69 to 80] 79 [72 to 85] 73 [69 to 80] 74 [69 to 81] 83 [76 to 88] 74 [69 to 80]
Polypharmacy, median [LQ to UQ] 4 [0 to 9] 8 [4 to 13] 4 [0 to 9] 4 [1 to 7] 7 [4 to 11] 4 [1 to 7]
WIMD/IMD

1. Most deprived 85,421 (12.9) 5,935 (18.5) 79,486 (12.7) 18,600 (22.8) 625 (26.2) 17,975 (22.7)
2. – 102,410 (15.5) 6,616 (20.6) 95,794 (15.3) 12,162 (14.9) 372 (15.6) 11,790 (14.9)
3. – 108,496 (16.4) 5,773 (18) 102,723 (16.4) 13,337 (16.3) 473 (19.8) 13,864 (17.5)
4. – 111,726 (16.9) 5,533 (17.2) 106,193 (16.9) 11,172 (13.7) 276 (11.6) 10,896 (13.7)
5. Least deprived 122,619 (18.6) 6,356 (19.8) 116,263 (18.5) 7,582 (9.3) 212 (8.9) 7,370 (9.3)
Missing 129,745 (19.7) 1,884 (5.9) 127,861 (20.4) 17,832 (21.8) 431 (18.0) 17,401 (21.9)

eFI score, median [LQ to UQ] 0.11 [0.06 to 0.19] 0.19 [0.11 to 0.28] 0.11 [0.03 to 0.19] 0.17 [0.08 to 0.25] 0.33 [0.22 to 0.42] 0.17 [0.08 to 0.25]
Frailty category∗

Fit 366,629 (55.5) 9,062 (28.2) 357,567 (56.9) 32,732 (40.0) 188 (7.9) 32,544 (41.0)
Mild 193,525 (29.3) 11,452 (35.7) 182,073 (29.0) 24,694 (30.2) 433 (18.1) 24,261 (30.6)
Moderate 77,792 (11.8) 8,083 (25.2) 69,709 (11.1) 14,496 (17.7) 747 (31.3) 13,749 (17.3)
Severe 22,471 (3.4) 3,500 (10.9) 18,971 (3.0) 9,763 (12.0) 1,021 (42.7) 8,742 (11.0)

BMI category
Underweight 12,642 (1.9) 1,750 (5.5) 10,892 (1.7) 1,742 (2.1) 123 (5.1) 1,619 (2.0)
Normal 121,946 (18.5) 9,286 (28.9) 112,660 (17.9) 24,862 (30.4) 890 (37.3) 23,972 (30.2)
Overweight 158,676 (24) 8,177 (25.5) 150,499 (24) 29,631 (36.3) 748 (31.3) 28,883 (36.4)
Obese 136,646 (20.7) 6,788 (21.2) 129,858 (20.7) 21,698 (26.6) 501 (21.0) 21,197 (26.7)
Missing 230,507 (34.9) 6,096 (19) 224,411 (35.7) 3,752 (4.6) 127 (5.3) 3,625 (4.6)

Smoking
Never 302,363 (45.8) 13,318 (41.5) 289,045 (46) 59,295 (72.6) 1,717 (71.9) 57,562 (72.6)
Ex 271,248 (41.1) 14,756 (46) 256,492 (40.8) 16 (0.0) 1 (0.0) 15 (0.0)
Current 86,806 (13.1) 4,023 (12.5) 82,783 (13.2) 22,390 (27.4) 671 (28.1) 21,719 (27.4)

Alcohol consumption
Harmful drinking 4,714 (0.7) 430 (1.3) 4,284 (0.7) 3,067 (3.8) 124 (5.2) 2,943 (3.7)
Higher risk drinking 686 (0.1) 35 (0.1) 651 (0.1) 899 (1.1) 18 (0.8) 881 (1.1)
Lower risk drinking 11,231 (1.7) 603 (1.9) 10,628 (1.7) 5,803 (7.1) 168 (7.0) 5,635 (7.1)
Previous higher risk/harmful drinking 90 (0) <10∗∗ (0) 82 (0) 28 (0.0) 2 (0.1) 26 (0.0)
Zero alcohol 1,247 (0.2) 70 (0.2) 1,177 (0.2) 5,695 (7.0) 282 (11.8) 5,413 (6.8)
Missing 642,449 (97.3) 30,951 (96.4) 611,498 (97.3) 66,193 (81.0) 1,795 (75.1) 64,398 (81.2)

∗FI scores of 0–0.12 = fit, >0.12–0.24 = mild frailty, >0.24–0.36 = moderate frailty, >0.36 = severe frailty. Not considered as a candidate predictor during model
development. ∗∗Exact values for small cell counts (<10) not reported due to SAIL Databank restrictions. LQ, lower quartile; UQ, upper quartile; WIMD, Welsh
Index of Multiple Deprivation; IMD, Indices of Multiple Deprivation

the region where predicted risks exceed observed outcomes).
Calibration curves across general practices were variable,
with over-prediction in some practices and under-prediction
in others, as shown in Supplementary Figure S3.5.

C-statistics of 0.72 (95% CI: 0.72 to 0.72) when pooled
across GP practices, and 0.72 (95% CI: 0.68 to 0.76) on
internal–external cross-validation, show promising discrim-
ination performance. As with calibration, discrimination
performance varied across GP practice (Figure 2).

Decision curve analysis suggested that the model had
clinical utility over treat-all and treat-none strategies in the
model development data, with net benefit ranging from
0.008 (suggesting eight additional correctly identified fall-
s/fracture events, over and above those falsely identified as
being at high risk, per 1,000 older adults assessed using the
model) down to 0 in the pre-specified risk range from 10%
to 25% (Figure 1). While benefit (in terms of true positives)
was seen in this range on average, the model did not exceed
the next best strategy in all practices (Supplementary Figures
S3.6/7).

Internal–external cross-validation showed consistent
calibration and discrimination performance for models
developed across WIMD subgroups (Supplementary Figures
S3.8/9/10), except for in those missing WIMD details,
where model performance was notably poor.

External validation

The eFalls model was applied, as shown in Supplementary
Box S3.1, to all individuals in Connected Bradford. Details
of the prediction distributions in the external validation data
are given in Supplementary Figure S.3.11.

Discrimination performance on external validation was
excellent, with a c-statistic of 0.816 (95% CI: 0.801 to
0.830) when pooled across practices (Table 2). The c-statistic
was consistently above 0.6 in all practices, as shown in
Figure 3, and was promising in most subgroups (Supple-
mentary Table S3.4). When assessed across frailty groups,
discrimination was notably lower in the severely frail sub-
group, with a c-statistic of 0.643 (95% CI: 0.638 to 0.646),
most likely due to the narrower case-mix distribution.
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Figure 1. Calibration plots and decision curves of the eFalls model on internal validation (in the model development data) and
external validation, before and after recalibration. The pre-defined region of clinical interest (threshold probabilities between 10%
and 25%) is highlighted on the decision curves.
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Table 2. Predictive performance summary for the eFalls prediction model on internal validation, internal–external cross-
validation and external validation, and the recalibrated model on apparent validation

Performance in model development
data

Performance in external validation
data

Recalibrated model performance in external
validation data

Pooled across GP
practices (apparent)

Internal–external
cross-validation

Overall performance Pooled across GP
practices

Overall performance
(apparent)

Pooled across GP
practices (apparent)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calibration slope
Summary estimate 0.99 0.99 1.248 1.203 1.000 0.964
95% confidence interval 0.97 to 1.01 0.75 to 1.22 1.244 to 1.265 1.133 to 1.273 1.000 to 1.013 0.908 to 1.020
95% prediction interval 0.80 to 1.18 0.30 to 1.67 – 0.858 to 1.548 – 0.687 to 1.240
τ 2 (95% CI) 0.009 (0.005 to 0.014) 0.052 (0.018 to 0.247) – 0.029 (0.006 to 0.060) – 0.018 (0.004 to 0.039)

Calibration-in-the-large
Summary estimate 0.154 −0.13 −0.931 −0.874 0.000 0.064
95% confidence interval 0.095 to 0.212 −0.66 to 0.40 −0.938 to −0.920 −0.964 to −0.783 −0.009 to 0.010 −0.027 to 0.154
95% prediction interval −0.96 to 1.27 −1.65 to 1.39 – −1.375 to −0.372 – −0.442 to 0.569
τ 2 (95% CI) 0.319 (0.275 to 0.373) 0.256 (0.091 to 1.219) – 0.061 (0.035 to 0.151) – 0.062 (0.035 to 0.149)

O/E ratio
Summary estimate 1.19 0.88 0.432 0.431 1.000 1.013
95% confidence interval 1.12 to 1.26 0.53 to 1.46 0.430 to 0.437 0.388 to 0.479 0.992 to 1.009 0.916 to 1.122
95% prediction interval 0.14 to 2.24 0.21 to 3.70 – 0.194 to 0.958 – 0.475 to 2.163
τ 2 (95% CI) 0.282 (0.230 to 0.348) 0.228 (0.082 to 1.085) – 0.157 (0.117 to 0.263) – 0.142 (0.106 to 0.239)

C-statistic
Summary estimate 0.72 0.72 0.825 0.816 0.825 0.816
95% confidence interval 0.72 to 0.72 0.68 to 0.76 0.824 to 0.828 0.801 to 0.830 0.825 to 0.828 0.801 to 1.000
95% prediction interval 0.68 to 0.76 0.59 to 0.85 – 0.715 to 0.886 – 0.715 to 0.886
τ 2 (95% CI) 0.010 (0.006 to 0.016) 0.002 (0.001 to 0.008) – 0.078 (0.039 to 0.138) – 0.078 (0.039 to 0.138)

Figure 2. Variability in performance of the eFalls prediction model on internal validation, across GP practices in the model
development data. Plots show calibration slope, calibration-in-the-large, observed/expected ratio and c-statistic plotted against their
standard error within each practice. Bounds show 95% prediction intervals for the performance measure across possible standard
errors.
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Figure 3. Variability in performance of the eFalls prediction model on external validation across GP practices—prior to
recalibration. Plots show calibration slope, calibration-in-the-large, observed/expected ratio and c-statistic plotted against their
standard error within each practice. Bounds show 95% prediction intervals for the performance measure across possible standard
errors.

Calibration curves (Figure 1) show that the eFalls model
over-predicted fall/fracture risk in the Connect Bradford
population, with predicted risks exceeding observed risks
across the full range of possible predicted values. This was
confirmed by a pooled CITL estimate of −0.874 (95% CI:
−0.964 to −0.783), which also suggested that predicted
risks were too high on average. The extent of over-prediction
was highly variable across GP practices (see Figures 3 and
S3.12), but was seen consistently across subgroups by IMD,
frailty, sex and BMI (Supplementary Figures S3.15–S3.18).

Thus, the eFalls model was recalibrated to better reflect the
Connected Bradford population. Recalibration did not affect

the discrimination performance or variability in calibration
across practices (Supplementary Figures S3.12/S3.14), but
corrected average over-prediction on apparent validation,
giving a pooled calibration slope of 0.964 (95% CI: 0.908
to 1.020) and pooled CITL of 0.064 (95% CI: −0.027 to
0.154). The equation for the recalibrated model is provided
in Supplementary Box S3.2.

Decision curves show that the eFalls model had clinical
utility at lower threshold probabilities on external validation,
but was no better than the treat-none alternative in the pre-
specified range of 10–25%. Net benefit over clinically impor-
tant thresholds did improve on average with recalibration,
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being superior to other strategies for threshold probabilities
up to 18% (Figure 1). Supplementary Tables S3.4 and S3.5
give a breakdown of sensitivity and specificity at various
threshold across this clinically important range, for the
eFalls and the recalibrated models, respectively. As with
calibration performance, net benefit was highly variable
across GP practices, which did not stabilise with recalibration
(Supplementary Figure S3.13).

Full details of model performance across clinically rele-
vant subgroups are shown in Appendix S3. Model perfor-
mance was fairly consistent across sexes and deprivation sub-
groups, while over-prediction of falls risk was most evident
in those who were underweight and those who had severe
frailty. The least net benefit was seen from using the model
in those who were fit or had only mild frailty, where the
proportion of fall/fracture events was lowest.

Discussion

Summary of main findings

This study developed and externally validated the eFalls
prediction model, using routinely collected EHR data from
around 750,000 older adults across two independent, retro-
spective cohorts. The eFalls model predicts the 1-year risk
of a fall/fracture, with excellent discrimination on external
validation (c-statistic 0.82, 95% CI: 0.80 to 0.83).

Calibration was variable across individual general prac-
tices in both the development and validation data, with a ten-
dency for the model to over-predict fall/fracture risk in the
Connected Bradford (external) population (O/E 0.43, 95%
CI: 0.39 to 0.48). Over-prediction was present, though less
extreme, on internal–external cross-validation across WIMD
subgroups (O/E 0.88, 95% CI: 0.53 to 1.46), primarily in
those with missing WIMD details.

Decision curve analysis in the development data suggested
net benefit above treat-all and treat-none approaches when
using the eFalls model with risk thresholds up 28%. This
implies clinical utility when applying the eFalls model with
thresholds between 10% and 25% for guiding decision mak-
ing, which were specified a priori as being of clinical interest.
On external validation, net benefit over other approaches was
seen for lower threshold probabilities (below 10%) but was
no better than treat-none for thresholds between 10% and
25%.

While the eFalls model was well calibrated on internal and
internal–external cross-validation (in Welsh national-level
data in SAIL), on external validation in Connected Bradford,
although there was evidence for excellent discrimination,
fall/fracture risk was slightly overestimated on average. This
overestimation of risk was likely due to the higher incidence
of falls in the development (4.9%) compared to the external
validation cohorts (2.9%). Simple recalibration methods
were employed, tailoring the eFalls model to the external
validation data. This resulted in improvements to calibration
performance in Connected Bradford (apparent calibration
slope 0.964, 95% CI: 0.908 to 1.020; CITL 0.064, 95% CI:

−0.027 to 0.154), while discrimination performance was
unchanged (remaining excellent).

Such miscalibration is often the case when applying a
prediction model in a new setting, due to differences between
the two populations. In the UK, where populations across
regions can vary greatly, there is a national programme to
establish Secure Data Environments (SDEs), which will
include regional NHS data. Given the current movement
towards use of these regional SDEs following the Goldacre
review [37], it is feasible (for the first time) for prediction
models to be recalibrated on a regional basis. Thus,
examining whether model recalibration notably improved
calibration performance was considered important and
relevant to contemporary practice. The performance of this
recalibrated model was assessed only as apparent validation,
thus its use is not currently recommended in practice without
further validation.

Implementation of eFalls into primary care EHR systems
could transform the way in which falls prevention services
are organised and delivered, through a standardised method
of efficient risk identification using existing primary care
records without the need for resource intensive clinical assess-
ments. For implementation, we would recommend use of
the externally validated eFalls model, although our findings
suggest that targeted recalibration to local or regional pop-
ulations could also be beneficial. For example, a regional
Integrated Care System in England may wish to examine
recalibration options, where their routine health data infras-
tructure supports this, although those implementing such
processes would need sufficient statistical knowledge around
model recalibration and validation methods. The planned
Secure Data Environments in England and related structures
in the devolved nations could support this approach.

Strengths and limitations of this work

Model development and external validation in two inde-
pendent UK data resources from Wales and England, based
on different systems and coding ontologies, is a notable
strength of this study. This approach adds much-needed
methodological rigour to the falls prediction field, which has
hitherto been limited by the absence of external validation
of models.

The population of interest in the study were frail older
adults, thus there was a possibility of death precluding a
fall/fracture during follow-up. In our modelling, we used
logistic regression to estimate the 12-month event risk. Indi-
viduals that died during the 12-month period were retained
in the risk set for the whole 12 months, so that risk estimates
from our model correspond to a real-world situation where
some individuals may die before experiencing the outcome
of interest (and thus death precludes them from ever having
the event). Hence, for some individuals predicted to have a
low falls risk, this may in fact be due to a higher competing
risk of death. An alternative approach could be a survival
model accounting for the competing event of death, for
example by using a Fine and Grey model [38]. Nevertheless,
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given the short time frame for prediction (just 12 months,
with everyone followed for 12 months or until they died
before 12 months) and low mortality rate during follow-up
(3.8% in the model development data, 4.3% in the external
validation data), we expect the impact of the modelling of
the competing event of death to be low.

Regarding medications, many falls-risk-increasing medi-
cations have been identified previously, including anticholin-
ergic medications, cardiovascular medications and gastroin-
testinal medications [39–41]. These were not included as
individual candidate predictors in our model development,
as this would have vastly increased the model complexity
and required sample size. We instead chose to construct and
include a single polypharmacy count variable, to be modelled
using fractional polynomials to allow for non-linear associa-
tions with the outcome. This approach simplifies application
of the model in new individuals, facilitating implementa-
tion in practice, while also capturing the prognostic effect
of polypharmacy, which itself has also been reported as
increasing falls risk [40].

Our extensive examination of the prediction model
on internal validation, internal–external cross-validation
and external validation included assessing important
performance measures such as calibration, which have
historically been overlooked in falls prediction work [13].
Use of decision curve analysis, with pre-defined thresholds
of clinical interest, adds further methodological robustness
and provides evidence of clinical utility for using eFalls in
clinical practice to identify people who are at increased risk
of experiencing a fall/fracture within the next year.

Due to differences in systems and coding ontologies across
the model development and validation datasets, the eFalls
model showed some miscalibration on external validation.
Recalibration to the Connect Bradford population resulted
in considerable improvements in calibration performance,
while maintaining the high discrimination of the eFalls
model.

We have not externally validated the eFalls prediction
model using international data, which would be an impor-
tant next step prior to wider implementation. It is also worth
noting that the recalibrated model has not yet been tested
externally, and the results presented here show the apparent
calibration of the model (as applied in the data used to derive
the recalibration). Differences in model calibration can stem
from differences across populations; as such, the recalibrated
model (tailored to the Connected Bradford data) would
likely show poor calibration if applied to the population
comprising the SAIL Databank.

Comparison with previous literature

Numerous falls risk prediction models are now available in
the literature, developed across a wide range of populations,
though these have often not been externally validated and are
at a high risk of bias [13]. Indeed, a 2021 systematic review
of falls prediction models for community-dwelling older
adults found that most studies included only very restricted

populations due to their exclusion of individuals with falls-
risk-increasing conditions. In comparison, the eFalls model
included such individuals and considered these conditions as
candidate predictors.

Only one external validation study had considered cali-
bration performance at the time of the 2021 review, with
calibration plots suggesting over-prediction of risk in new
individuals and variation in calibration performance across
populations [42], as was seen to be the case with the eFalls
model. Similarly, a 2022 UK-based model developed and
externally validated in EHR showed over-prediction of 1-
year falls risk on external validation, with inconsistent cal-
ibration performance across GP practices [43]. Thus, the
calibration of the eFalls model on external validation is
consistent with other models in the area.

Discrimination performance of the eFalls model on inter-
nal validation was in line with that seen in other similar mod-
els (c-statistics ranging from 0.49 to 0.87 over 37 models)
[13]. On external validation, discrimination performance
was akin to that of a 2022 model, developed and validated
only in those with an indication for antihypertensive treat-
ment (pooled c-statistic across general practices: 0.866, 95%
CI 0.862 to 0.869). When compared to models for more
diverse community-dwelling populations, discrimination of
the eFalls model was far superior (previously reported c-
statistics from 0.62 to 0.69, 3 models).

Implications for policy and practice

The use of routinely collected primary care EHR data for falls
prediction is novel, with a historical absence of EHR-based
falls prediction models developed and externally validated
using rigorous prediction modelling methodology.

Using routinely collected data to identify individuals at
high risk of falls, as opposed to using instruments that
require additional clinical resources, is aligned with cur-
rent requirements to support routine falls prevention service
pathways. Using such an approach could also help support
a more proactive approach to falls prevention, moving away
from referral pathways predicated on an individual having
experienced an initial fall event. The use of eFalls to identify
people at high risk of experiencing fall/fracture events could
further complement the development of new falls prevention
services based around the World Falls Guideline algorithm.

Our next steps include seeking to implement the eFalls
prediction model into UK primary care EHR systems, in
partnership with system suppliers, and to discuss how local
recalibration approaches might be implemented in practice.
We aim to work in partnership with UK policymakers to
explore how eFalls could be used to inform health policy in
this important area and will seek to incorporate into future
falls prevention guidelines. We will also seek to make eFalls
available to Integrated Care Systems across England and
the equivalent structures across the devolved nations. We
will make the eFalls model available for future research into
falls prevention and plan further external validation work in
partnership with international researchers.
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Conclusion

The eFalls prediction model has good predictive performance
and could support proactive stratification as part of falls
prevention services, if appropriately embedded into primary
care EHR systems, including local recalibration where possi-
ble. This could help transform how falls prevention services
are organised and delivered in the UK and, in the future,
internationally.

Supplementary Data: Supplementary data mentioned in
the text are available to subscribers in Age and Ageing online.
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